Avogadro and His Number

Avogadro’s Hypothesis

In 1811, Amedeo Avogadro (1776–1856) (born Lorenzo Romano Amedeo Carlo Avogadro di Quaregna e di Cerreto) looked at Gay-Lussac’s results and concluded that when they are at the same temperature and pressure, equal volumes of gas (like two balloons of the same size) contain the same number of “particles.” These particles can be individual atoms, molecules, or even a mixture thereof.

Continue …

The Speed of Atoms and Kinetic Theory

James Clerk Maxwell

James Clerk Maxwell (1831–1879) was born in Edinburgh, Scotland, in 1831. His family moved to a small country estate in Middlebie, Galloway (southwestern Scotland) that his father, John Clerk inherited (the addition of the name “Maxwell” was required to satisfy legalities of this inheritance). When he was eight, James’ mother died, of abdominal cancer; she was forty-eight. John Clerk Maxwell was an attentive and perhaps overly protective father. Unfortunately, he made the mistake of entrusting James early education to a tutor who employed beatings as a teaching tactic. Fortunately, a visit from his maternal aunt, Jane Cay, discontinued this abusive treatment, as she was able to convince Maxwell’s father to allow him to continue his education at Edinburgh Academy.

Continue …

Cooling Soup

Cooling soup by blowing on a spoonful prior to placing it in your mouth works because the hotter atoms are literally blown away.  This is because the soup is made up of atoms comprised of a range of speeds. The atoms with the higher speeds – the hotter ones – are on top, hovering above the atoms with the lower speeds – the cooler ones. So, the end result of blowing on the spoonful of soup is that the hotter atoms are blown away, while the cooler ones are left behind.

Particles in Motion

That the properties of gases could be explained by particles in motion had been advocated in 1738 by Daniel Bernoulli (1700-1782), who proposed a model that is very similar to the one in acceptance today.